Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Genet Eng Biotechnol ; 20(1): 109, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35849206

RESUMO

BACKGROUND: Global food supply is highly dependent on field crop production that is currently severely threatened by changing climate, poor soil quality, abiotic, and biotic stresses. For instance, one of the major challenges to sustainable crop production in most developing countries is limited nitrogen in the soil. Symbiotic nitrogen fixation of legumes such as soybean (Glycine max (L.) Merril) with rhizobia plays a crucial role in supplying nitrogen sufficient to maintain good crop productivity. Characterization of indigenous bradyrhizobia is a prerequisite in the selection and development of effective bioinoculants. In view of this, bradyrhizobia were isolated from soybean nodules in four agro-climatic zones of eastern Kenya (Embu Upper Midland Zone, Embu Lower Midland Zone, Tharaka Upper Midland Zone, and Tharaka Lower Midland Zone) using two soybean varieties (SB8 and SB126). The isolates were characterized using biochemical, morphological, and genotypic approaches. DNA fingerprinting was carried out using 16S rRNA gene and restricted by enzymes HaeIII, Msp1, and EcoRI.  RESULTS: Thirty-eight (38) bradyrhizobia isolates obtained from the trapping experiments were placed into nine groups based on their morphological and biochemical characteristics. Most (77%) of the isolates had characteristics of fast-grower bradyrhizobia while 23% were slow-growers. Restriction digest revealed significant (p < 0.015) variation within populations and not among the agro-climatic zones based on analysis of molecular variance. Principal coordinate analysis demonstrated sympatric speciation of indigenous bradyrhizobia isolates. Embu Upper Midland Zone bradyrhizobia isolates had the highest polymorphic loci (80%) and highest genetic diversity estimates (H' = 0.419) compared to other agro-climatic zones. CONCLUSION: The high diversity of bradyrhizobia isolates depicts a valuable genetic resource for selecting more effective and competitive strains to improve promiscuous soybean production at a low cost through biological nitrogen fixation.

2.
Onderstepoort J Vet Res ; 86(1): e1-e12, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31368325

RESUMO

Several types of odours are involved in the location of host animals by tsetse (Diptera: Glossinidae), a vector of animal African trypanosomiasis. Host animals' ageing urine has been shown to be the source of a phenolic blend attractive to the tsetse. Nevertheless, limited research has been performed on the microbial communities' role in the production of phenols. This study aimed at profiling bacterial communities mediating the production of tsetse attractive phenols in mammalian urine. Urine samples were collected from African buffalo (Syncerus caffer), cattle (Bos taurus) and eland (Taurotragus oryx) at Kongoni Game Valley Ranch and Kenyatta University in Kenya. Urine samples, of each animal species, were pooled and left open to age in ambient conditions. Bacteriological and phenols analyses were then carried out, at 4 days ageing intervals, for 24 days. Phenols analysis revealed nine volatile phenols: 4-cresol, ortho-cresol, 3-cresol, phenol, 3-ethylphenol, 3-propylphenol, 2-methyloxyphenol, 4-ethylphenol and 4-propylphenol. Eight out of 19 bacterial isolates from the ageing urine revealed the potential to mediate production of phenols. 16S rRNA gene characterisation of the isolates closely resembled Enterococcus faecalis KUB3006, Psychrobacter alimentarius PAMC 27887, Streptococcus agalactiae 2603V, Morganella morganii sub.sp. morganii KT, Micrococcus luteus NCTC2665, Planococcus massiliensis strain ES2, Ochrobactrum pituitosum AA2 and Enterococcus faecalis OGIRF. This study established that some of the phenols emitted from mammalian urine, which influence the tsetse's host-seeking behaviour, are well characterised by certain bacteria. These results may allow the development of biotechnological models in vector control that combines the use of these bacteria in the controlled release of semiochemicals.


Assuntos
Antílopes/urina , Bactérias/metabolismo , Búfalos/urina , Bovinos/urina , Odorantes/análise , Fenóis/urina , Animais , Bactérias/classificação , Quimiotaxia , Quênia , Microbiota , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Moscas Tsé-Tsé/fisiologia
3.
Front Microbiol ; 9: 968, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867872

RESUMO

The increasing interest in the use of rhizobia as biofertilizers in smallholder agricultural farming systems of the Sub-Saharan Africa has prompted the identification of a large number of tropical rhizobia strains and led to studies on their diversity. Inoculants containing diverse strains of rhizobia have been developed for use as biofertilizers to promote soil fertility and symbiotic nitrogen fixation in legumes. In spite of this success, there is paucity of data on rhizobia diversity and genetic variation associated with the newly released and improved mid-altitude climbing (MAC) bean lines (Phaseolus vulgaris L.). In this study, 41 rhizobia isolates were obtained from the root nodules of MAC 13 and MAC 64 climbing beans grown in upper and lower midland agro-ecological zones of Eastern Kenya. Eastern Kenya was chosen because of its high production potential of diverse common bean cultivars. The rhizobia isolates were characterized phenotypically on the basis of colony morphology, growth and biochemical features. Rhizobia diversity from the different regions of Eastern Kenya was determined based on the amplified ribosomal DNA restriction analysis (ARDRA) of PCR amplified 16S rRNA genes using Msp I, EcoR I, and Hae III restriction enzymes. Notably, native rhizobia isolates were morphologically diverse and grouped into nine different morphotypes. Correspondingly, the analysis of molecular variance based on restriction digestion of 16S rRNA genes showed that the largest proportion of significant (p < 0.05) genetic variation was distributed within the rhizobia population (97.5%) than among rhizobia populations (1.5%) in the four agro-ecological zones. The high degree of morphological and genotypic diversity of rhizobia within Eastern Kenya shows that the region harbors novel rhizobia strains worth exploiting to obtain strains efficient in biological nitrogen fixation with P. vulgaris L. Genetic sequence analysis of the isolates and testing for their symbiotic properties should be carried out to ascertain their identity and functionality in diverse environments.

4.
Front Plant Sci ; 8: 443, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28408912

RESUMO

Climbing bean (Phaseolus vulgaris L.) production in Kenya is greatly undermined by low soil fertility, especially in agriculturally prolific areas. The use of effective native rhizobia inoculants to promote nitrogen fixation could be beneficial in climbing bean production. In this study, we carried out greenhouse and field experiments to evaluate symbiotic efficiency, compare the effect of native rhizobia and commercial inoculant on nodulation, growth and yield parameters of mid-altitude climbing bean (MAC 13 and MAC 64) varieties. The greenhouse experiment included nine native rhizobia isolates, a consortium of native isolates, commercial inoculant Biofix, a mixture of native isolates + Biofix, nitrogen treated control and a non-inoculated control. In the field experiments, the treatments included the best effective native rhizobia isolate ELM3, a consortium of native isolates, a commercial inoculant Biofix, a mixture of native isolates + Biofix, and a non-inoculated control. Remarkably, four native rhizobia isolates ELM3, ELM4, ELM5, and ELM8 showed higher symbiotic efficiencies compared to the Biofix. Interestingly, there was no significant difference in symbiotic efficiency between the two climbing bean varieties. Field results demonstrated a significant improvement in nodule dry weight and seed yields of MAC 13 and MAC 64 climbing bean varieties upon rhizobia inoculation when compared to the non-inoculated controls. Inoculation with ELM3 isolate resulted to the highest seed yield of 4,397.75 kg ha-1, indicating 89% increase over non-inoculated control (2,334.81 kg ha-1) and 30% increase over Biofix (3,698.79 kg ha-1). Farm site significantly influenced nodule dry weight and seed yields. This study, therefore, revealed the potential of native rhizobia isolates to enhance delivery of agroecosystem services including nitrogen fixation and bean production. Further characterization and mapping of the native isolates will be imperative in development of effective and affordable commercial inoculants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...